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The analytic solutions of some boundary layer problems in the 
theory of Brownian motion 

T W Marshall and E J Watson 
Department of Mathematics, University of Manchester, Manchester M13 9PL, UK 

Received 4 June 1986 

Abstract. We give analytic solutions of the generalised albedo and Milne problems for the 
Uhlenbeck-Omstein process, and we discuss the relation between these and the original 
Wang-Uhlenbeck problem of determining the distribution of first-passage times. 

1. Introduction 

In 1945 Wang and Uhlenbeck [ l ]  posed the problem of finding the distribution of 
position, x, and velocity, U, for one-dimensional Brownian motion in a uniform force 
field starting at x = y and U = U in the presence of an absorbing barrier at x = 0. It 
can be posed as a boundary value problem for W(x,  U ;  f ly,  U )  satisfying 

aw aw aw a2w 
- + ( u + 2 a ) - +  w - u -  

at au2 au ax 
x > o  

W ( x ,  U ;  0 )  = 6 ( x - y ) 6 ( u  - U )  (1.2) 

w+o as U + * o 3  and as X - + + o 3  (1.3) 

W ( 0 ,  U ;  t )  = 0 U > 0. (1.4) 
The quantities 1, U, x and a have been made dimensionless as in [ 2 ] .  

obtain the Laplace transform W ( x ,  U ;  p ) .  More precisely, we obtained the quantity 
This problem is still not completely solved, but recently [ 2 ]  we showed how to 

from which it is possible to deduce the mean of the first-passage time distribution, 
and also the asymptotic distribution for large t. Here we obtain explicitly the expression 
for W and relate it to the analytic solutions of two stationary problems [3,4] which 
have arisen in chemical kinetics and coagulation studies. We also present a simplified 
calculation of the mean first-passage time. 

The stationary problems involve finding P(x ,  U )  satisfying 

a’ P aP aP 
- + ( u + 2 a )  -+ P -  U-= 0 
au2 au ax 

x > o  
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We obtain a problem with a unique solution in one of two ways. The first way may 
be called the generalised albedo problem (GAP) and consists of adding the condition 

P - 0  as X + +CO. (1.9) 

The second way is called the Milne problem ( M P ) .  It concerns the zero-field case 
(a = 0) and consists of taking g( u )  = 0, with a certain specified asymptotic behaviour 
for large x: 

P(X, U )  - (27r-l”(x- U + M )  exp(-fu2) asx++co g ( u )  = 0 (1.10) 

where M is a constant, called the Milne length, which is to be determined. There is 
a connection [3] between these two problems. We denote by a(x, ulu )  the solution of 
GAP with g( U )  = S (  U - U). Then the solution of the Milne problem is 

PM(~ ,y )=(2 . r r ) -1 /2 (x -u )  exp( - fu ’ )+ (2~) - ’ /~  u exp(-fu’)a(x, ulu)  du. (1.11) 

Until our recent analytical result, most of the progress, even on the equilibrium 
problems [3-61, was numerical; for example, the Milne length was found to lie in the 
region of 1.46, but this quantity was not recognised as - l ( f )  = 1.460 35 . .  . . In this 
paper we obtain analytic expressions for the solutions of both GAP and MP. This 
enables us to assess the accuracy of the numerical solutions, in particular near the 
singular point (x, U )  = (0,O). 

The case a # 0 is, in many ways, easier than the case a = 0, so we shall solve the 
GAP for cy # 0 and obtain the zero-field result by considering the limit (Y + 0. The 
appropriate set of eigenfunctions is 

lom 

{f;(u): n = 0 , 1 , 2 . .  .} (1.12) 

where 

C(U) = f n ( u )  f ; ; ( u )  =ffl(-u) (1.13) 

and 

f n ( u )  = 

- - 

where 

n e x p ( ~ u 2 ) ~ , ( 2 q , ,  - U )  

n ! ) - ‘ I2  exp[f(q, - u)’+fq2 , ]  du” exp[-f(2qfl - U)’] (1.14) 
d” 

qn = ( n  - a2)1’2 (1.15) 

and D,( z )  is the parabolic cylinder function, properties of which are given in appendix 
A of [2]. 

We shall assume, as has become traditional, that 
( a )  the set {E} is complete over the range ( -CO, CO) with scalar product 

r w  
( F ,  G) = J 1u1 exp(- iu2)F(u)G(u)  du 

( b )  the set {c} is complete over the range (0, CO) with the scalar product 
-m 

( F ,  G)’= jOm u exp(- iu2)F(u)G(u)  du, 

(1.16) 

(1.17) 
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The corresponding results for Q = O  have been proved [7] and we think it is only a 
matter of time for someone to extend the proof to our case. We have ourselves 
established [2] that, for all n,L has an expansion in terms of {f:} for u>O: 

(1.18) 

which means that ( b )  follows from ( a ) .  A direct proof of (1.18) is given in the appendix. 

2. The generalised albedo solution 

It is convenient to introduce the pseudoproduct 

U exp(-Su’)F(u)G(u) du. 

The elements of the set (1.12) satisfy 

Then, given our completeness assumption, an arbitrary function G( U )  may be expanded 
as 

Now a set of solutions of (1.6) satisfying (1.7) and (1.9) may be obtained by 
separation of the variables: 

P,(x, u ) = e x p ( - t u 2 - a x - c u u ) f l ( u )  exp(-q,x). 

Hence the solution of the generalised albedo problem is 
m 

a(x, ~ l u ) = ( 8 v ) - ” ~ u  exp[- fu2-ax+a(u-u) ]  q i ’ f l ( u ) F : ( u )  exp(-q,x). (2.9) 
n = o  
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The coefficients appearing in (2.7) take the values [2] 

a m n  = (qm + q n  ) - ‘Qi’Qi l  (2.10) 

where 

Since amn = a,, it follows, from (1.18), that 
F;(u)=O U < O .  (2.12) 

We obtained asymptotic expansions for Qn and fi when n +CO, while for small n we 
obtained an  asymptotic expression for the denominator of (2.1 1) as N + CO. We have 
therefore succeeded in overcoming the computational difficulties associated with the 
extremely slow convergence of (2.9). 

To obtain the zero-field solution, CY + 0, we must pay special attention to the first 
term of the summation in both (2.7) and (2.9), since qo = la1 appears in the denominator. 
From the definition of fi, it follows that 

f r f ( v ) =  1f (a(u+O(CY2)  (2.13) 

and the behaviour of Qo for small CY is given [2] by 

21 CY 1 Qo = 1 - I CY 15( i) + O( CY *). (2.14) 

Hence 

(2.16) 

where now qn = n”’, so the zero-field limit of (2.9) is 

(2.17) 

The connection between our  generalised albedo function and Selinger and Titulaer’s 

A(u1v) = ua(0, - u ~ u ) u - ’  (2.18) 

[3] function A(ulu) is 

which has the property that 

A ( U [ U )  = 0 U <o. (2.19) 
When integrated with respect to U, this gives the quantity 

(2.20) 

which is the probability that a particle, injected with velocity U at x = 0, is absorbed 
at  some later time. Substituting (2.9) in (2.18) gives 

00 

A ( u l u ) = ( 8 ~ ) - ’ / ~ u  exp(-iu2+au+cu2)f;;(u) q;lfl(u)F:(u) 
n =o 

(2.21) 
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where the +(-)  sign is taken if a is negative (positive). Then, using the pseudo- 
orthogonality relations (2.2), 

f f > O  

a < O  4 i u )  = { 1 - exp( au + a 2 ) ~ : (  u )  
(2.22) 

and (2.16) shows that this quantity is continuous, though not differentiable, at a = 0. 
We therefore verify that the Uhlenbeck-Ornstein process is recurrent for a > 0 and 
non-recurrent for a < 0. 

3. The Milne solution 

We must now substitute (2.17) in ( 1 . 1 1 ) .  The integration is facilitated by property 
(2.12), which allows us to extend the range of integration to -a. Now, for a f 0, the 
pseudo-orthogonality relations (2.2) give 

[fiG +m,m = 0 

[k-w -&),El = 0 n = l , 2 , 3  , . . . .  (3.1) 

Hence, in the limit a + 0, we obtain 
cc 

U exp(-fu2)fi( u )  du = 0 L 
I, 

and 
02 

U’ exp( -fu2)E( U )  du = 0 a =o. 

We therefore find that 

P ( x ,  U )  = (2.rr)-’l2 exp(-tu2) 

(3.2) 

(3.3) 

This is the solution of the Milne problem, and, as stated in the introduction, it establishes 
that the Milne length is equal to - l ( f ) .  

Selinger and Titulaer [3] and Titulaer [4] studied the density profile 

oc 

= x - l( t)  - C a,, exp(-xn’l2) 
n = l  

where 
I / 2  1/2n-1 a,, = t ( n ! ) -  n exp(-fn)QI’. 

For Q,,, as n + q we have [2] the asymptotic expansion 

Q,, - ( 2 7 ~ ) ’ / ~  exp( - 2 
,,,=o ( 2 m  + l )n  
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Combining this with the Stirling expansion for n !, we obtain 

k = l  

The first few coefficients in this expansion are 

c, = 0.125 989 72 ~2 = -0.026 191 53 

c4 = - 1.6763 x c5 = 2.2823 x 

For small n we put 

+ b, a , =  C k n - k / 2 - 3 / 4  

k = 1  

where the first few b, are 

b ,  = 3.0447 x lo-, 

b, = 1.60 x 

b, = 2.273 x lo-' 

b5 = 6.7 x lo-'. 

We then have 

(3.8) 

~3 = -0.002 527 14 

where 

b3 = 4.83 x 

(3.9) 

(3.10) 

( 3 . 1 1 )  

(3.12) 

(3.13) 

is the function defined by Titulaer which, for small x, using the method of Olver [8], 
may be computed as 

(3.14) 

An efficient programme for n M ( x )  is now obtained by using (3 .13)  for x a  1 and 
(3.14) for x < 1 and substituting in (3.12). Titulaer calls x - c ($ )  - n"(x)  the 'boundary 
layer part of the density profile' and in table 1 we give our values for this quantity 
with Titulaer's values printed alongside for comparison. 

Table 1. The boundary layer part of the density profile x - $ -  n'(x) :  (A), our values; ( B ) ,  
Titulaer's values. 

0 0.524 24 0.528 
2 P  0.470 56 0.476 
2 F  0.415 16 0.427 
2-4 0.333 86 0.341 
2-2 0.201 20 0.206 
1 0.060 1 1  0.061 
4 0.001 98 0.002 
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and, substituted into (1 .5) ,  it gives the Laplace transform of the first-passage-time 
distribution, which is the quantity we calculated in our previous paper [2]. On the 
other hand, for y = O+ it becomes 

w(x, u ; p / O + ,  u ) = ( S ~ ) - I ' ~ e x p [ - ~ u ~ + a ( u - u ) - a x ]  1 q;lexp(-qnx)fi(u)F:(u) 
03 

n = O  

(4.8) 
which, for p = 0, is U-' times the solution (2.9) of the generalised albedo problem. 

In [2], however, we showed that there is a simpler route to the first-passage-time 
problem than by calculating the Green function. If we study the backward, instead 
of the forward, Fokker-Planck equation, the problem may be formulated without any 
reference to the dependence on U and x. We could say that this problem is an essentially 
backward one, just as the Milne problem is an essentially forward one. 

The mathematical complexity of [2] is due mainly to the procedure we used in 
obtaining the expansion coefficients umn. The result is given here in (2.10). Armed 
with this, and using the completeness assumptions of 0 2, we can now present a greatly 
simplified argument. The mean first-passage time is defined, for a > 0 only, by 

(4.9) *( y ,  U )  = -GIP( y ,  U ;  O+). 
This satisfies the differential equation 

a 9  a 9  a2* 
av2 au ay 

( u + 2 a ) - + u - = - l  -- (4.10) 

with the boundary condition 

*(O, U )  = 0 u < o  (4.11) 

and certain appropriate boundary conditions as / U /  and y tend to +CO (see [2] for 
details of these). Now put 

W Y ,  u ) = i a - ' ( y + ~ ) + * ( Y ,  U). (4.12) 

Then 

a+ a2 * 
au2 au ay 

( u + 2 a )  -+ u- = 0 -- (4.13) 

and 

*(O, U )  = t a - I u  u < o .  (4.14) 
The appropriate eigenfunctions are 

and the solution is 

(4.16) 

where 

(4.17) 
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Now the expansion coefficients for the left-hand side of (4.17) may be obtained 
with the pseudo-orthogonality relations (2.2): 

D 

- $ - ' U  e-OLu=e"2(l+~a-2)~(u)-~boa-'fi(u)-~ q,'(af,(u)+bfn'(u)) (4.18) 
n = l  

where 

a, = ( n ! ) - ' i 2 e x p ( - q n + a q , ) ( q n - a ) " - 1  (4.19) 

b, = (n!)- '/2 exp(-in - aqn)(qn + (4.20) 

The expansion (4.18) holds for all U. But for negative U we can use (1.18) to express 
as a sum over f;;. We then find that the coefficients in (4.17) are 

oc 

c o = e u * ( 1 + & - 2 ) - t a - 1  1 q;laonb, 
" = O  

3c 

n =-1 29" -1 ( a n + ;  1 q i l a m n b n  

m=O 

which gives us the same result as (4.4) in [2]. 

(4.21) 

(4.22) 

Appendix. Proof of equation (1.18) 

In [2] the function 

was studied, where qm = ( m  + T ) ~ / ~  and the T plane is cut along the negative real axis. 
This function is regular in q, except for poles at q = -qm, and satisfies 

('42) y+(iq; T)y+(-iq; 7 )  = r(7- q 2 ) .  

?+(iq; 7)  - (2?T)1/4q-q*+T-'i2 e 9 * i 2  

It was shown in [2] that as 191 +CO, with larg q1 s T - 6, 

(A3) 

and also that the parabolic cylinder function 

(A41 112 q = - r + 1 / 3  - q = / 2  Dq*-,(2q + U )  - (2T) 4 e Ai(q'l3u) 

where Ai denotes the Airy function. 
It follows that 

f ( q ;  7, U )  = y+(iq; 7)Dq2-,(2q+ U )  ('45) 

is regular except for poles at q = - q m ,  and that 

f ( q ;  T,  U )  - ( 2 ~ ) " ~ q " ~ ~ A i ( q " ~ u )  

as 14) +CO with larg q )  d n - 6. Thus f ( q )  is exponentially small at infinity when U > 0, 
and is O(lql- ' /6)  when U =0, except when q is near the negative real axis. 
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The behaviour of Dq2-,(-2q + U )  was also obtained in [2]. With the aid of (A2) 
and the asymptotic form of the Airy function it is found that 

f ( - q ;  T ,  0) - ( 2 ~ ) ~ ’ ~ A i ( O ) q - ” ~  sin( 7 - q 2 ) r  

as 141 +CO with larg q1 S 4r - S. 
Now consider 

where C,  is the circle 141 = I T +  N + ; l ’ / 2  and N is a large positive integer. On C N ,  
(s in( . r -q2)als  C for some C>O, so that the integrand is O ( W 5 l 8 )  if u>O and 
O( N-”I2) if U = 0. Consequently I N  + 0 as N + 00. When we evaluate I N  as a sum 
of residues with the aid of (A2), we obtain 

where the remainder of the series after N terms is O( N-’” )  if U > 0, and O( N-”I2)  
if U = 0. When n is a positive integer and 7 = a 2  ( T = p + a 2  for 0 4), (A9) gives (1.18); 
however, both sides of (A9) are analytic in qn, so that it remains valid for complex n 
and 7, provided qn is bounded away from -qm( m = 0,1,2, . . .). The restriction to U 2 0 
is essential, since the series diverges when 0 < (arg U /  < 3.1. 
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